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Stochastic resonance in a linear system: An exact solution
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Multistable systems can exhibit stochastic resonance which is characterized by the amplification of small
periodic signals by additive noise. Here we consider a nonmultistable linear system with a multiplicative noise
forced by an external periodic signal. The noise is the sum of a colored noise of mean value zero and a noise
with a definite sign. We show that the system exhibits stochastic resonance through the numerical study of an
exact analytical expression for the mean value obtained by functional integral techniques. This is proof of the
effect for a very general kind of noise which can even have a definite sign.
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I. INTRODUCTION

The term Stochastic resonance (SR) was introduced by
Benzi, Sutera, Vulpiani, and Nicolis [1-3] in an attempt to
explain the periodic recurrence of ice ages on Earth. This
effect consists in that when a periodic signal and noise are
applied simultaneously as an input, the system can be tuned
to obtain resonance. Typically this phenomenon is found in
nonlinear dynamical systems driven by a combination of a
random and periodic force [4,5]. Although an external peri-
odic forcing can be replaced by some internal source of a
periodic nature, nonlinearity seems to be the necessary ingre-
dient for the occurrence of the SR. Nevertheless, it has been
remarked recently [6-11] that SR can also occur in linear
systems subject to a multiplicative rather than additive noise.
It must be emphasized that the effect takes place only for
colored noise, whereas it disappears for white noise.

In this paper we report, to the best of our knowledge, an
exact result for a linear model under a multiplicative noise
forced with a periodic term. The noise is a linear combina-
tion of a colored noise and its square and we make an exact
analytic calculation of the mean value of the variable using
functional integral techniques. A maximum of the amplitude
of the signal is found when we vary the parameters thus
showing the appearance of SR. This result confirms and gen-
eralizes previous results reported in the literature. Since we
obtain an exact analytic solution we can conclude that SR
exists in linear systems forced with a variety of multiplica-
tive colored noise. In Sec. II we show the calculation of the
analytical solution using path integrals. In Sec. III we show
the results of the numerical work performed on the analytical
solution found in Sec. II.

II. THE LINEAR SYSTEM: ANALYTICAL SOLUTION

The problem we shall consider is described by a linear
model subjected to a linear and a quadratic multiplicative
colored noise and driven by a periodic sine wave signal of
amplitude A and frequency (). It can be written as
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i(t) = —[a, + a, &) + a,&(1)]x(1) + A sin(Q1), (1)

where a,, a,, a, are free parameters and &(r) is a colored
noise. In this paper we will take &(r) as the Ornstein-
Uhlenbeck (OU) process defined by

&) = — yE(1) + (1), (2)

where y>0 is the reciprocal of the correlation time of the
OU process and ¢ >0 measures the intensity of the Gaussian
white noise 7(r) with mean value (7(¢))=0 and correlation
function {(7(r) p(¢'))= 8(t—t"). Linear systems with only lin-
ear terms in the noise have been considered in Refs. [7-11].
In [7,8] the authors find the SR phenomena in a linear system
subjected to a multiplicative color noise of the dichotomous
type and with a short autocorrelation time. They examine the
stationary mean value of the process where they identify a
maximum as a function of the noise intensity. In Refs. [9,10]
the same model but with a multiplicative Gaussian type noise
is solved, and the phenomena of SR are found as a maximum
of the signal-to-noise ratio. In Ref. [11] a linear model with a
multiplicative colored noise of the OU type is solved, also
finding the phenomena of SR as a maximum of the stationary
mean value. We point out that systems driven by a quadratic
noise, which modelizes a noise with a constant sign, but
without an external periodic signal, have been considered
previously in [12-14]. In [12] a functional derivative tech-
nique is developed to calculate averages and correlation
functions for linear systems subjected to a general Gaussian
noise. This method provides partial differential equations for
the correlation functions and is different from our approach
here which allows, through the use of path integrals, the
direct calculation of the correlation functions starting from
the solution of the differential equation (1) expressed as a
functional of the colored noise. In [13] the author constructs
a clever method to obtain evolution equations for the one-
dimensional probability distribution p(x,f) of the process
generated from Eq. (1), which he points out represents the
simplest exactly solvable stochastic system with a quadratic
noise. Then he derives evolution equations for the moment.
Finally in [14] a linear system is studied under an additive
quadratic noise, i.e., x(f)=—ax(t)+&(t). An exact master
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equation for the probability distribution p(x,7) of the process
is found and its Kramers-Moyal expansion is studied.

Equation (1) can be seen as a linear first order differential
equation for the variable x(z). A formal integration of Eq. (1)
leads to

x(1) = xpe™ 0T YLE(-) 31, 1]
+Af drsin(Qn)e =Ty &)1, 7], (3)

0

where

YLEC)st,1y] = e Trddm i e 0] (4)

is a functional of &(-). We perform now the average (- --) over
the realizations of the colored noise &(-). We get

(x(1)) = xpe~ ") (1, 1,)) +AJZ drsin(Qn)e 0 g(1,7),
fo
)
where
o(1,1") = (e Trdhadraf@ly = p (6)
To calculate the previous mean value we search a functional
integral representation using the methods developed in Ref.

[15]. We put 7=t'+je, 7y, =t, j=0,1....N+1, e=(¢
—t")/(N+1). Then the discretized expression is

N+1
olt.1') = exp[— e (@& + az§§>]
j=1

N+1 N+1
=f I1 d&§iWy, exp|:— € (a1§j+a2§jz‘):|’ (7)
j=0 Jj=1

where
W1 = Wt (Ensrs Tvars = 360, 70)
N+1
= H P(fj,Tj|§j_1,7}'_1)W1(§0,7'0) (®)
j=0

is the joint probability density of the OU process. Here
P&, 7|€,7), 7>17', is the conditional probability density
and W,(&,7,) is the one time probability density at time
Tp=t'. Since we are interested in the long time behavior of
(x(7)) we take the joint probability in the stationary state and
then we must take for W, the time independent stationary
probability of the process which is given by

Wi (&, 70) = Pyl(&) = \/ ﬁe_y/a’%- )

For small € (big N) we obtain from (2) that the short time
conditional probability density is given with sufficient accu-
racy [16] by
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P(&.7{&j1.7-1) = ;6_5’2”(“/ <+ (10)
V2mec

where we have defined A§;=¢-¢§,, j=1,2...,N+1. Re-
placing (8)—(10) into the discretized functional integral (7)
and taking into account that due to (10) one is in the prepoint
discretization, we have to change to the midpoint discretiza-
tion in order to be able to do a partial integration in the
continuous version of (7), which will give the factor e!/27(~%0)
in the next formula [17-19]. After some algebra we obtain

ol1,1") = 1210\ | L f dépdee " EO(E 138,17,
7C ) o

(11)
where
N N+1
, 1 dé; € Ag\?
I(&,1:6,1") = — fl_[ —L= exp —-E[(-i)
\2mec J j2) \2mec 2¢55
+N2E + 2ca1§j} (12)

and this last functional integral is independent of the discreti-
zation. We have defined the real positive number A
=\y?+2ca,>0 and an obvious condition is that we must
have y?+2ca,>0. If this is not the case we shall not have a
stationary state for our process as it will be clear from what
it follows. Completing squares on the argument of the expo-
nential the previous expression can be written formally as a
discretized independent functional integral in the continuous
which corresponds to the limit N— o (e—0)

N1t (! . cap \?
=iV f>JD§exp{—Zﬁ dr[§2+)\2<§+7> ]}

X 8(&(r) — &) 8(E(t") — &) (13)
where the Dirac’s deltas are used as a notation to indicate
that the values of & in ¢ and ¢’ are fixed for the present

integration and & represents the derivative dé&(7)/dr.

Now performing the transformation x(-)=&(-)+ca;/\?,
which does not change the measure of integration Dé=Dy
and any other factor in the integration because the Jacobian
is equal to 1, we obtain

I= eca%/zxz(t—z’) J Dxe—l/Zcf;,dT()'(ZH\zXz)

X o(x(1) = x) x(t') = xo)- (14)

This functional integral can be calculated exactly using the
method introduced in [20] and we obtain

[ = etV [N exp< “heoshp ,
21rc sinh p 2c¢ sinh p

A N\ cosh p
XX~ 5 X2> (15)
csinh p 2c¢ sinh p

where p=N\(t—t"), x=E&+ca,/\%, xo=&+ca,/\*. In this for-
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mula we can see that if y?+2ca, <0 we have to change the
hyperbolic functions by trigonometric functions and then the
expression is not defined for any p.

We replace (15) into expression (11) and use transforma-
tion x(-) defined above. Since d&ydé=dx,dx we obtain a
Gaussian integral with the value

) 1 - (Bla)? 2
sty T p{ 8oy
<a-n-(22)(<)

2a, \? |
X — . (16)
a+B) \1-(Bla)e™
where a=N+vy and B=N-7. Going back to Eq. (4) we can
see that in order to have a stationary state (x(r)),, it is neces-
sary to analyze ¢ “0U"7¢(¢,7) in the limiting case 77— —o,
since finally we shall have to take the limit #,— —. From

Eq. (16) we can see that this implies the condition ay+3/2
—2ca%/ (a+B)*>>0, or in terms of the original parameters

|V +2ca 1 ca®
a0+b>—(y+—'). (17)
2 2 ¥+ 2ca,
Then it is direct to see that
13
(x(t))xtzAf ds sin(Qs)e 0" p(t,5). (18)

From (16) we see that ¢(z,s) depends only on A(z—s). Per-
forming the change of variables u=\(f—s) in formula (18)
we can write

o0

x(t)) = %J du sin(Qt - %u)e‘“o”go(u) (19)
0

and finally by simple algebraic manipulations we arrive to
the exact result

(1)) = Xr 5in(Q1 = ), (20)

A ——— B
XS,:{\B%+B§, d):arctan(B—l),
2

where

* Q
B, =f du cos(—u)e‘“ougo(u), (21)
0 A

” ()
By=| dusin| —u|e™"p(u).
0 A,

For future reference we write explicitly

N 1[@ 2(_”
PO=ENT Z(Brae > ™| " x| 27 “Nasp) |"
1-e™

_<Z+z>(£)(azflﬁ>2(1_(B/a)e-u>}~ (22)
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FIG. 1. A surface of resonance x,=x,(c,v)-

III. RESULTS

The following are the main results of the numerical work
performed on the above analytical expressions we have ar-
rived at. First, we plotted what we called the surfaces of
resonance. The result, which we show in Fig. 1 is the surface
plot of the stationary amplitude, x,, versus c¢ and v, the pa-
rameters of the OU process.

Then, now setting ¢ constant, we plot families of y,, vary-
ing y and (). We can distinguish three distinct cases, as fol-
lows.

A. The general case

This is the solution of the general problem with terms
linear and quadratic in the noise. Assigning to the parameters
the following values: ag=a;=A=1; a,=-1;c=0.98, Fig. 2 is
obtained which shows the stationary amplitude y,; as a func-
tion of the parameter y. Note that we have found a family of
curves, each member being identified by a particular fre-
quency belonging to the set {0.25; 0.30; 0.35; 0.40; 0.45}.

B. The linear case

This is the solution of a problem with a linear term in the
noise [7,11] and is simply a particular case of the general
solution found in Sec. II, namely that with a,=0. For this
particular case, from condition (17) we obtain ay>ca}/2>.
In this case our scheme reproduces the results of [9]. Taking
the following values for the parameters: ap=a;=A=1;

Frequency {Hz)
Xst —0=0.25
.30
.35
.40
.45

0.5

Y
2 2.5 3 3.5 4

FIG. 2. The general case. Stationary amplitude y,, versus 7.
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Fregquency {Hz)

Xst —2=0.20
1.75 .25
=0.30
1.5¢ =0.35
.40
1.25
1t
6.75
0.5}
6.25

Y
0.8 1 1.2 1.4

FIG. 3. The linear case. Stationary amplitude yx,, versus 7.

¢=0.98, we obtain Fig. 3 which shows the stationary ampli-
tude x,, as a function of the parameter . The set of frequen-
cies examined in this case is {0.20; 0.25; 0.30; 0.35; 0.40}.
As in the previous case we have plotted a family of curves,
each member being identified by a particular frequency.

C. The pure quadratic case

This is the solution of a problem with only a quadratic
term in the noise and it also corresponds to the particular
case of the general solution found in Sec. II, namely that
with a;=0. Inequality (17) reduces to the expression a,
+\¥?+2ca,/2>1/2y. In contrast to the previous cases, the
parameters here are given by the following values: a
=0.525; a,=-1; A=1; ¢=0.50. The frequencies studied are
the same as for the general case. Figure 4 shows the station-
ary amplitude y,, as a function of the parameter 7.

As can be seen in all the previous figures, the stationary
amplitude of the mean value decreases monotonically as y
increases which implies that the SR phenomena disappears
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Frequency (Hz)

Xst —0=0.25
3 20, 30
----Q=0.35
2.5 ; . ---Q=0.40
PR, - - Q=0.45
2t 7~ ~ o~ ST
~ = I T~ T I T~ oSS
1.5 - T =
1
0.5
‘ : : A — Y
1 1.5 2 2.5 3

FIG. 4. The pure quadratic case. Stationary amplitude y,, versus
Y.

in the white noise limit, as remarked in the literature.

The reason for assigning to some parameters the value 1
in each of the cases is due to the possibility of a rescaling of
the original problem given by Egs. (1) and (2), a procedure
which reduces the number of independent parameters of the
original problem. Finally due to its simplicity, the linear
equation (1) admits the exact solution (20) for the mean
value of x(r), from where one can analyze the diverse possi-
bilities to obtain stochastic resonance varying the parameters
that determine the properties of the amplitude of the mean
value.
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